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Supplementary Figure 1: ACsN cancels noise while retaining the correct intensity levels. (a) TIRF image of
microtubules of fixed HeLa cells acquired with an exposure time of 111 ms. The image intensity has been scaled
by 11.1 times for fair comparison with (b) and (c). (b) The same sample with the exposure time set to 10 ms. (c)
Denoised image of (b) using ACsN. (d) Comparison of the cross-sectional profiles in (a-c) along the corresponding
dashed line in (a). The profile of the ACsN-processed image (c) agrees well with the corresponding signals
captured in (a) and shows further denoised background and thus improved SNR. More quantitative results and
analysis are shown in Supplementary Table 1. Scale bar: 10 pm

Supplementary Table 1: Improvement of image quality for wide-field microscopy after ACsN
denoising.

Microtubules Mitochondria
(Supplementary (Figure 2a,b)
Figure 1)
Raw 0.47 0.11
SSIM ACsN 0.70 0.92
Raw 22.28 10.98
PSNR (dB) ACsN 29.19 35.84
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Supplementary Figure 2: ACsN processing improves the performance of SRRF, allowing fast super-resolution
imaging. (a) TIRF image of microtubules aquired at a frame rate of 200 Hz (exposure time = 5 ms). (b,c) SRRF
deconvolution obtained using 1 and 100 frames, respectively. (d) ACsN reconstruction of (a). (e,f) SRRF
deconvolution obtained using 1 and 100 ACsN-processed frames, respectively. (g) Profile of two microtubule
filaments in (a, gray) and (d, red) corresponding to the white dashed line in (d). (h-i) The same profiles measured
in (b,e) and (c,f), respectively. Scale bar: 4 pm.
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Supplementary Figure 3: ACsN improves localization performance in STORM. (a) A representative single-
molecule frame of labeled mitochondria in a HeLa cell. (b) The same frame in (a) after ACsN processing. (c-d) The
presence of the readout noise can alter the single molecule signal and produce less localization results (green
circles) than expected (white circles). Image (c) was saturated for better visualization of signals covered by the
noise. (e-f) Noise and hot pixels can produce patterns that could be misidentified as single molecules (black
circles). Scale bars: 4 pm (a), 1 pm (d,f).




Supplementary Figure 4: The analysis of sample-related fluctuation can minimize the effects of imperfect
labeling. A sequence of 30,000 single molecule frames of labeled mitochondria in a HeLa cell was acquired (a)
and then processed with ACsN (b). (c) Map of the standard deviation of each pixel in the sequence in (b). After
denoising, any pixel fluctuation non-related to the fluorescent molecules is cancelled so that the standard
deviation map in (c) is related only to the blinking of fluorescent molecules. (d) The presence of unbound markers
can generate a localization noise all over the image that denoising of the raw data cannot fully mitigate (e).
However, using the standard deviation image in (c) to map the blinking rate and set a threshold across the field-
of-view, it is feasible to suppress the localizations associated with nonspecific markers and thus produce a cleaner
STORM image (f). STD: standard deviation of pixel intensity along the image sequence. SA: STORM analysis.
Scale bar: 4 pm.




Supplementary Figure 5: TIRF microscopy with an industrial-grade CMOS camera. (a) TIRF image of F-actin in a
fixed BPAE cell, taken at a frame rate of 38 Hz. (b) The same image in (a) after ACsN denoising. (c) The same cell
in (a) imaged with a sCMOS camera as a reference, taken at a frame rate of 10 Hz. (d-f) Zoomed-in images of (a),
(b), and (c), respectively, corresponding to the boxed region in (a). Scale bars: 10 um (a), 4 um (d).




Supplementary Figure 6: Fluorescence microscopy with an industrial-grade CMOS camera. (a) Epi-fluorescence
imaging of mitochondria in a fixed bovine pulmonary artery endothelial (BPAE) cell, taken at a frame rate of 38
Hz. (b) The same image in (a) after ACsN denoising. (c) The same cell in (a) imaged with a sSCMOS camera as a
reference, taken at a frame rate of 10 Hz. (d-f) Zoomed-in images of (a), (b), and (c), respectively, corresponding
to the boxed region in (a). Scale bars: 10 um (a), 4 um (d).

Supplementary Table 2: Quality improvement of the raw and ACsN denoised images obtained
with the industrial-grade CMOS camera with respect to the sCMOS reference.

Mitochondria F-actin
(Supplementary  (Supplementary
Figure 6) Figure 5)
Raw 0.32 0.15
SSIM ACsN 0.80 0.63
Raw 22.39 10.59
PSNR (dB) ACsN 30.66 14.50
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Supplementary Figure 7: ACsN processing of LSFM volumetric data obtained with a SPIM system. (a,b)
Maximum intensity projections (MIP) of a fluorescently labeled adult brine shrimp before (a) and after (b) ACsN
denoising. (c-f) Zoomed-in images of representative z-slices of the volumetric data corresponding to the positions
marked by the dashed boxes in (a) and (b). (g,h) Orthogonal views along the YZ plane at x = 805 pm of both the
raw (g) and the denoised (h) volumetric scans. (i-1) Zoomed-in images corresponding to the boxes in (g) and (h).
Orthogonal views along the XZ plane of the raw (m-o0) and denoised (p-r) volumetric scans at y =237 pm (m,p), y
=904 pm (n,q), and y = 1491 pm (o,r). Scale bars: 200 um (a,g), 50 pm (c,e,i), 100 pm (m).
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Supplementary Figure 8: ACsN processing of LLSM volumetric imaging of fixed skin cells. (a,c,e) Maximum
intensity projections of the raw volumetric data acquired with an exposure time of 20 ms, 10 ms, and 5 ms,
respectively. Insets show the zoomed-in images of the corresponding boxed regions. (b,d,f) Maximum intensity
projections of the volumetric data in (a), (c), and (e), respectively, after ACsN processing. Insets show the zoomed-
in images of the corresponding boxed regions. (g-1) Representative slices of the volumetric data acquired with the
20-ms exposure time before (g,i, k) and after (h,j,1) denoising at position 51 pum (g,h), 63 um (i,j), and 81 um (k,1).
(m-r) Representative slices of the volumetric data acquired with the 10-ms exposure time before (m,0,q) and after
(n,p,r) denoising at position 51 um (m,n), 63 um (o,p), and 81 um (q,r). (s-x) Representative slices of the volumetric
data acquired with the 5-ms exposure time before (s,u,w) and after (t,v,x) denoising at position 51 pm (s,t), 63 um
(u,v), and 81 um (w,x). It should be noted that due to the illumination scheme of LLSM, slice’s positions are
skewed with respect to the axis normal to the coverslip and do not correspond to the actual z direction. Scale bars:
5 um (a), 800 nm (a inset), 2 pm (g).




Supplementary Table 3: Improvement of image restoration for the volumetric scans shown
in Supplementary Figure 7. The reported number are averages of the SSIM and PSNR values
evaluated individually for each light-sheet slice. For the reference image, we used a volumetric
scan of the same cell acquired with an exposure time of 20 ms and a laser power of 107 pW.

SSIM PSNR (dB)
tex (ms)
Raw ACsN Raw ACsN
5 0.21 +0.03 0.8+0.2 13+3 35+4
10 0.38 £ 0.07 0.93 +0.07 20+5 40+3
20 0.61 = 0.08 0.97 £ 0.03 26+5 42 +3
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Supplementary Figure 9: ACsN processing of LLSM volumetric scans of a live NCI-H1299 NSCLC cells expressing
Dendra2. (a-c) Maximum intensity projection (MIP) of the raw volumetric data at different time points. These
volumetric data were acquired in the sample scanning modality. Each scan was composed by 101 slices with a
spacing of 561 nm. The exposure time for each slice was 20 ms. (d-f) The same frames depicted in (a-c) obtained
by MIP of ACsN-processed data. Here, ACsN utilized the time-lapse stacks of the individual slices for 3D
grouping and image deskewing was performed after denoising. The comparison can be better visualized in
Supplementary Movies 6 and 7. Scale bars: 20 um (a), 2 pm (a inset).
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Supplementary Figure 10: ACsN processing of LLSM volumetric scans of a live NCI-H1299 NSCLC cells
expressing Dendra2. (a-d) Representative z-slice of the raw volumetric data at different time points acquired with
an exposure time of 20 ms. (e-h) The frames depicted in (a-d) after ACsN processing. (i-j) Zoom-ins of the area
corresponding to the dashed square in (a) and (e), respectively. (k-1) Zoom-ins of the area corresponding to the
dashed square in (b) and (f), respectively. (m-n) Zoom-ins of the area corresponding to the dashed square in (c)
and (g), respectively. (o-p) Zoom-ins of the area corresponding to the dashed square in (d) and (h), respectively.
Due to the illumination scheme of LLSM, slice’s positions are skewed with respect to the axis normal to the
coverslip and do not correspond to the actual z direction. These volumetric data were acquired in sample scan
mode. Scale bars: 10 pm (a), 2 um (i).
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Supplementary Figure 11: ACsN processing of LLSM volumetric scans of a live mouse embryonic fibroblasts
(MEFs). (a,b) Maximum intensity projections of the raw volumetric data at two representative time points
acquired with an exposure time of 20 ms. (c,d) Maximum intensity projections of the volumetric data in (a) and
(b) after ACsN processing of each frame. (e-h) Zoomed-in images of the area corresponding to the dashed square
in (b) at different times. (i-l) Zoomed-in images of the same areas in (e-h) after ACsN denoising. (m-o)
Representative slice of the volumetric data at different times before (m-o) and after (p-r) denoising. These
volumetric data were acquired in the sheet scan mode. The comparison can be better visualized in Supplementary
Movie 8. Scale bars: 5 um (a,m), 2 um (e).
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Supplementary Table 4: List of the sSCMOS and CMOS sensors used in this work with the
corresponding applications reported in the manuscript.

Sensor model

Hamamatsu
ORCA Flash v.3

Hamamatsu
ORCA Flash v.2

PCO.Edge

FLIR Imaging,
GS3-U3-51S5M-C

ON
Semiconductor,
MT9V032C12STM

Sensor
Type

sCMOS

sCMOS

sCMOS

CMOS

CMOS

Readout noise

0.8med/1.4rms e @30 Hz

1.0med/1.6rms e @100 Hz

0.8med/1.4rms e @30 Hz
1 .Omed/l .6ms e @ 100 Hz

1.1med/1.5rms e @33 Hz
1.5med/1.7:ms € @ 100 Hz

1.6med e [ref1]

10rms € [ref2l
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QE

(max)

82%

82%

60%

76%

60%

Applications

Epi-fluorescence, TIRF,
Light-field microscopy,
Single particle tracking,
STORM, Deconvolution

Lattice light-sheet
microscopy

SPIM

Epi-fluorescence and
TIRF microscopy

Miniaturized microscopy
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Supplementary Note 1. Physical principles behind sCMOS noise

Noise in a camera image is the aggregate spatial and temporal variations in the measured signal,
assuming constant, uniform illumination. The total effective noise per pixel is the quadrature
sum of different noise components. The most relevant ones are:

Dark Shot Noise (Ds). Dark current is a current that flows even when no photons are incident
on the camera. It is a thermal phenomenon resulting from electrons spontaneously generated
within the silicon chip (valence electrons are thermally excited into the conduction band). The
number of dark electrons collected during the exposure is the dark shot noise, which does not
depend on the signal level.

Photon Shot Noise (Ps). This is the statistical noise associated with the arrival of photons at the
pixel. Since photon measurement obeys Poisson statistics, the photon shot noise is given by the
standard deviation of Poisson distribution, op, which is equal to the square root of the signal.

Readout Noise (R). This is the noise generated in producing the electronic signal, which results
from the sensor design but also by the design of the camera electronics. CMOS sensors are
silicon-based integrated circuits formed by a dense matrix of photo-diodes that convert
photons into electronic charge®. This charge, generated by the interaction between photons and
silicon atoms, is stored in a potential well. CMOS pixels perform charge-to-voltage conversion
at each location using additional circuitry that increases readout noise and generates extra
fixed-pattern noise sources compared to CCDs*.

Fixed-pattern Noise. Given a uniform light source, different CMOS pixels will generate a
different number of photoelectrons from the same number of impinging photons. This
difference in pixel response is referred as photo-response non-uniformity or fixed-pattern noise,
and is caused by variations in pixel geometry, substrate material and micro-lenses®. This is even
more relevant in sCMOS sensors, where the increased signal capacity and much lower readout
noise comes at the expenses of the fixed pattern noise due to pixel gain fluctuation®.

The effect of fixed-pattern noise depends on the electronics of the camera, is proportional to
the illumination level, and can be modeled by a multiplicative component, y, and a bias, .

Ideal camera. We consider an ideal camera as a device that achieves the maximum pixel
sensitivity. This means that every photon is converted to a photoelectron, i.e. the quantum
efficiency (QE) is 100%, every pixel voltage is digitized identically, i.e. y=1and =R =0, and
there is no dark current, i.e. Ds= 0.

The relation between the sensitivity and the quality of an image is given by the signal to noise
ratio (SNR) as a function of the input photon number (S). The formula to calculate the SNR for
a single pixel at various light intensities is:

VQE-(y-5+B+b)+(R)?

)

where b is the signal background.
In the case of a perfect detector with an ideal signal, i.e. no background, this equation becomes:
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SNR = /S = op, )

As mentioned above, Ps = op, which reminds us that even with an ideal camera, the signal is
still affected by photon shot noise, which is intrinsic of photon statistics. However, even if noise
cannot be completely eliminated from the measuring process, effort must be made in order to
minimize the noise sources of the devices.

Here we present a software for the Automatic Correction of sCMOS-related Noise (ACsN)
that combines camera calibration, noise estimation and sparse filtering in order to correct the
most relevant noise sources generated by a sCMOS camera.
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Supplementary Note 2. Automatic correction of sSCMOS-related noise

2.1 Pseudo code

A pseudo-code of the algorithm is presented in Supplementary Table 5 and illustrated in
Supplementary Figure 12. The algorithm uses the known parameters of the experimental setup
to correct pixel-dependent signal fluctuation and to produce a precise estimation of the readout
noise. Then, sparse filtering is used to remove the predicted noise through the enhancement of
the self-similarity of the sample. The details of the architecture of the ACsN algorithm are
described in the Supplementary Notes 2.2-2.5.

This results in a quantitative image restoration that permits to retrieve from noisy data the
same information that would be otherwise obtained with a higher-intensity, slower imaging.

Supplementary Table 5: Pseudo-code of the ACsN algorithm.

LOAD
Load image
Load acquisition parameters: NA, lambda, pixel size
Load camera parameters: gain map and offset value
FIXED PATTERN NOISE REMOVAL
Remove offset
Adjust pixel value with camera gain map
NOISE ESTIMATION
Calculate OTF cutoff frequency
Produce high-pass filtered image
Estimate noise variation
SPARSE FILTERING
Perform grouping on input image
Hard thresholding
Perform grouping on thresholded image
Wiener filtering
Image quality check
> 3D Grouping and Video Processing

18
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Supplementary Figure 12: Main steps of the ACsN algorithm. (a) The noisy input image is rescaled using offset
and gain pixel maps. (b) The variation of the noise in the input image is estimated by the intensity distribution
of the pixel values in a high-pass filtered image (inset). This image is generated setting the threshold of the
filter at the OTF boundary. This way all the signal is filtered out of the image. The estimated noise variation is
used as a parameter for sparse denoising in (c). (c) The input image is scanned in steps of 3 pixels. At each step,
a reference patch is chosen (orange square) and the software selects up to 8 similar patches (green squares)
within a certain neighborhood (dashed square). All these patches are then grouped (G) in 3D stacks. Each stack
is filtered using 3D hard thresholding (HT) and aggregated to generate an intermediate image. Grouping (G)
is performed again on the intermediate image to obtain new 3D stacks. Finally, Wiener filtering (WF) is applied
to both sets of stacks to generate the final image (d). Scale bar: 10 pixels.
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2.2 Canceling fixed-pattern noise sources

The number of photons Sy(t) impinging the photo-diode p during a certain exposure time t
follows a Poisson distribution. If we suppose that an electron is generated for each absorbed
photon, the number of electrons generated in the potential well is also Poisson distributed. In
the ideal case, the voltage measured at the sensor output should be proportional to the collected
charge: V= Cq = C-Sy(t), where C is the equivalent capacitance of the photo-diode and ¢ the
electric charge.

However, the presence of fixed-pattern noise in sCMOS cameras generates in different pixels
a different number of photoelectrons from the same number of impinging photons. This effect
is proportional to the illumination level and reflects the probability that a photon can be
absorbed by the photo-diode. It is modeled as a multiplicative factor y, applied to the
parameter of the Poisson distributed variable Spy(t).

During the AD conversion, the voltage produced by each pixel is read as a difference from a
reference level, which represents the absence of light. In practice, this reference voltage is
assigned a positive value large enough that voltages below the reference will still correspond
to positive values. This is responsible for a bias (f8,) in the measured intensity values, especially
relevant at low light levels.

Finally, another kind of fixed-pattern noise is related to the fact that the readout for CMOS
sensors is performed line by line. At a given time, all columns of one line are readout through
the output column amplifiers. Differences from one column amplifier to another introduce a
column fixed pattern, which is also proportional to the signal intensity and its contribution can
be included in y, and f,,.

The acquisition of a sSCMOS camera can be modeled, then, by the equation”?:

Z, = y,Pois{S, (D)} + N(0,03) + B,, (3)

where Z,, is the value of the pixel p and N(ug, oz) the Gaussian distributed readout noise of
mean pup = 0 and standard deviation oz . In this simplified model we have omitted the
contribution of dark current, which can be neglected for exposure times below 1s, and the
quantization noise due to the analog to digital conversion, which is negligible compared to
readout noise*”’.

Since fixed-pattern noise depends only on the camera circuitry, f, and y,, can be estimated
through a one-time calibration. We have mapped the pixel-dependent offset 5, by averaging a
series of dark frames while the gain y,, was estimated from multiple sets recorded at different
illumination intensities (see Methods).

Once both B, and y,, are available, the acquired image can be rescaled to remove the fixed-
pattern noise component from the measurement:

M, =
14 yp

(4)

Clearly, M, represents a mixture of the incoming photons from the sample and the randomly
generated readout noise from the AD conversion. Thus, in order to obtain S,, a careful
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estimation of both the readout noise N(0,05) and the fluctuation due to photon shot noise
Pois{S,(7)} is necessary in order to remove the noise efficiently while preserving the
underlying signal.

2.3 Noise estimation

In the previous section, we modeled camera-related noise as the contribution of both readout
noise and photon shot noise. It is important to notice that these two contributions have different
statistics. In fact, the former is a Gaussian white noise, while the latter follows a Poisson
distribution. However, the Poisson distribution becomes a good approximation of the Gaussian
distribution when the photon flux (4p) is greater than 3 photons per pixel'® (see Supplementary
Figure 13a) and the error committed by approximating o, with a Gaussian standard deviation
o¢is less than 1% when the photon flux is more than 5 photons per pixel (see Supplementary
Figure 13b).

Notably, the abovementioned conditions on the photon flux are usually satisfied for many
applications in fluorescence microscopy. Therefore, we consider the camera-related noise as
the result of the sum of two independent Gaussian-distributed random variables, which, by
theory, is still a Gaussian-distributed random variable:

N(uy,0y) = N(0,05) + N(up,06) =N (llP;\/ o + Ug)- 5)

Thus, we model the camera noise as a white Gaussian noise, which means that it generates a
pattern of Gaussian distributed intensities in each frame and has a constant power spectral
density (PSD). In particular, the constant PSD implies that the noise is present at every
frequency and cannot be simply removed by band-pass filters in the Fourier space.

An alternative solution is to adopt patch-based denoising techniques, which rely on the self-
similarity of the sample in space or time!'. Here, in order to untangle the contribution of the
actual signal from the camera noise in M,,, we evaluate the self-similarity based on the sparsity
in the Fourier space.

However, an accurate estimation of the noise variation, oy, is fundamental to retain the
fidelity of the reconstruction, both in terms of quantitativity of the recovered intensity values
and resolution of the image. To this end, we use a few known instrumental parameters, i.e.
numerical aperture (NA), emission wavelength and pixel size, to calculate the radius of the
optical transfer function (OTF) of the system. Given that most of the signal will be contained
by the OTF'213, we use a high-pass filter to isolate the high frequencies of the image, where the
noise contribution is separated by the statistics of the photoelectrons. This way, it is feasible to
characterize the noise and obtain a precise estimation of oy.
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Supplementary Figure 13: Gaussian approximation of a Poisson distribution. (a) Gaussian fitting (solid lines) of
Poisson-distributed data (dots) for different values of photon flux 1. In all cases x* > 0.99. (b) The relative error
between the Poisson and Gaussian standard deviations for A, = 5 is less than 1%.

If we call H(f) the modulation transfer function (MTF) of the system, we have that:

of = [" NolH(f)2df, ©)

where N, is a constant value that represents the noise power per unit bandwidth.
In practice, white noise cannot be fully recorded because every camera acts as a low pass filter

with cutoff frequency f and, thereby, its MTF will be:

Mﬂ={§;§; @)
and the exact variance will be:
ot = [ NolH(P)I2df. (®)

Now, if we apply a high pass filter with cutoff frequency f. equal to that of the optical system
to the input noisy image, we will obtain another image with:

oz = [ NolH()I2d. ©)

From Supplementary Equations (7) and (8) we can obtain:
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2 [ NGIH(DI2dS
R — (10)

of  f] NolH(p)Idr

Finally, substituting Supplementary Equation (6) in (9) and solving the integrals, we have

that:
_ f
N =G % (1)

Aberrations in the microscope system might alter the effective OTF radius, which makes the
use of the theoretical value a conservative approach. However, this does not affect the
estimation of oy as long as the PSD of the noise remains constant with the frequency, as
mentioned earlier in this section.

2.4 Sparse filtering

Once the standard deviation of the noise is known, we proceed to filter it out. To do so, we use
sparse filtering to take advantage of the self-similarity of the sample!®. The process can be
divided into three main parts: grouping, collaborative filtering and aggregation.

The grouping uses the block-matching concept to find similar patches for each reference patch.
It groups a reference patch with the similar patches into a 3D array!>'. Specifically, the
algorithm chooses a k x k patch (P) in the noisy image and searches an m X m area for other
similar patches (Q). Such similarity is assessed by the normalized square distance in Lo:

d(p,Q) =120k (12)
Then, the similar patches are stacked in a 3D group, P[P], up to a maximum of 8. This is
repeated with different reference patches until all the noisy images are stacked in 3D groups.
At this point, collaborative filtering employs a 3D transform, %, to filter the coefficients of
each group all at once. Due to the similarity between the patches, the 3D transform results in
even sparser representation of the original patches than the 2D transforms whereas the noise

still has a constant power spectrum?. Collaborative filtering can be expressed by the formula:

Pre) =7l (v (el @IPD)) (13)
where y is a hard-thresholding operator with threshold 4, oy:
yeo={0 Ml =how (14)
x  otherwise

where gy is the previously determined noise variation (see Supplementary Note 2.3), and 4, a
multiplicative factor.

Once the collaborative filtering produces all the patch estimates, the aggregation procedure
returns the denoised patches to their original locations. During the grouping part, one patch
can be assigned to more than one group. This implies that pixels can have more than one
estimation. The final estimate is computed as a weighted average of all overlapping pixels. The
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weights are defined so that homogeneous patches are prioritized over the patches containing
edges and corners:

Wy = { (Np)™L ifNp > 1 (15)

1 otherwise
where Nr is the number of non-zero coefficients in the 3D block after hard-thresholding.
Finally, the image obtained after this process is used as an intermediate denoised image for a
second run of sparse filtering. This second-time process is the same as the first one with the

only difference being the use of Wiener filtering on both noisy and intermediate images instead
of hard-thresholding:

PY(P) = 1%, (cp - T (PIP])), (16)
where the Wiener coefficient is:
w 2
. |74 (P[PD)] (17)

T @ +o?

It is important to note how both collaborative filtering steps depend on the estimation of oy
and how, thus, the accuracy of this estimation affects the effectiveness of the denoising process.
In particular, the threshold 4, 0y is one of the most important parameters in terms of denoising
performance!s.

2.5 Denoising of video sequences

In case of noisy video sequences, ACsN evaluates the image quality improvement and has the
option to perform a further sparse filtering step, referred to as sparse video filtering!>?. This is
similar to the first sparse filtering operation with the difference being that during the grouping
task the algorithm looks for similar patches also in the neighboring frames. This means that the
search area for similar patches this time is not an m X m square but an m X m X t spatio-
temporal volume. This way, lingering noise can be further reduced taking advantage of the
sample self-similarity, not only in space, but also in time.

The spatiotemporal correction is performed first along the time direction and then across the
space. The similar patches are searched in a three-dimensional sequence of blocks built
following a specific trajectory, which is supposed to follow the motion in the scene. Indeed, to
maximize the temporal correlation, during video filtering the search window is shifted
according to a motion estimation of the reference patch in time. This is performed using a
motion estimator with the sequence down-sampled by a factor of two and computing the
motion trajectories using a fast diamond search?!. The trajectory of a block is defined by the
sequence of the most similar blocks in the neighboring t frames. Note that down-sampling
increases the signal-to-noise ratio, making the motion estimation less impaired by noise®.

It is important to notice that the motion estimation is performed over an area of q X q pixels
for each frame, where g is chosen in order to alleviate the sampling requirements in relation to
the dynamics while retaining a low runtime by parallelizing the processing of each area.
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Nonetheless, it is also important to notice that ACsN achieves its maximum efficiency if the
number of patches in each group is maximized. This implies that the optimal temporal
sampling should assure the presence of a moving feature within the each area during at least
4-8 frames.

The additional denoising operation roughly doubles the processing time (see Supplementary
Note 6), so it is important that it is run only when needed. Moreover, the improvement of video
tiltering becomes relevant only for very noisy images. For this reason, after the first sparse
tiltering step is performed, the improvement is evaluated by measuring the peak signal-to-
noise ratio (PSNR) of each frame. In this evaluation, the average between each frame and its 5
nearest neighbors is used as reference image. If the PSNR, on average, is lower than an
empirical threshold, the video filtering is performed. We have found that this is most likely to
happen when the value of PSNR falls below 35, which proved to be an optimal threshold in
order to reach a satisfying compromise between speed and image quality (see Supplementary
Figure 14).

Finally, it should be noted that video filtering involves only an extension of the search
window during the grouping phase and does not involve any time averaging, so that the
temporal resolution is preserved.
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Supplementary Figure 14: Video processing improves the quality of image restoration. (a) Image of microtubules
in a HeLa cell. This is a representative frame of a sequence of 100 frames recorded with an exposure time of 5 ms.
(b,c) Denoised images of the frame in (a) obtained setting the PSNR threshold for video denoising to 20 (b) and 35
(c). (d,e) Both structural symmetry index measurement (SSIM) and peak signal-to-noise ratio (PSNR) show a
significant improvement at exposure times lower than 10 ms. Each data point represents the average SSIM and
PSNR calculated over four series of 100 microtubule images of HeLa cells and the error bars represent the
respective standard deviation. Each dataset was acquired with different exposure times, namely: 111 ms, 10 ms, 5
ms and 1 ms. Each series was processed with ACsN using different thresholds for video processing. For more
details about the calculation and meaning of SSIM and PSNR, please refer to the Methods section in the main text.
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Supplementary Note 3. Algorithm characterization

3.1 Parameters optimization

The performance of ACsN was tested on both simulated and experimental data. The input
parameters that are given to the program are related to both the camera and optical systems.
In the former case, camera gain and offset matrices are needed. These matrices are pre-
determined experimentally for each camera (see Methods in the main text). In the latter case,
the input parameters are the nominal values for the numerical aperture, wavelength and pixel
size in the image plane (i.e. physical pixel size divided by magnification).

The other parameters used in the program are fixed and have been chosen in order to
maximize both accuracy and speed. The width and height of the patches, are fixed to k=8 pixels,
while the width and height of the neighborhood of the reference patch, in which other similar
patches are searched, are set to m = 19 pixels. According to Maggioni et al.?, for video
denoising we set the number of neighboring frames of the spatio-temporal search volume to
t = 9. The size of each area for motion estimation during video denoising was set by default to
q = 200 pixels, but it can be customized by the user. The maximum number of the patches in
each 3D group can affect the processing-time of the algorithm, so it was limited to 8 patches
per group.

The minimum distance under which two blocks are assumed similar is highly dependent on
on, see Supplementary Equation (12). However, for on <40, it has been shown that the optimal
value is 2500'8. Furthermore, as stated above, 4, is another critical parameter for the denoising
performance together with on. Their product defines the threshold under which the coefficients
of image in transform basis are set to zero. We have tested different values of 4, and found that
the algorithm gives the best performance with 4,=4.0 (see Supplementary Table 6).

Supplementary Table 6: Optimal value of the parameter A, calculated using the simulated
image shown in Supplementary Figure 12. The optimal 1, was chosen as the one that maximizes
both the peak signal-to-noise ratio (PSNR) and the Structural similarity index (5SIM) for the
restored image. The maximum values are marked in red.

SNR (before denoising)
0.5 1 2
4, DPSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM
2.7 33.41 0.705 31.88 0.742 31.11 0.792
4.0 33.71 0.712 32.70 0.804 32.09 0.864
5.4 33.53 0.674 32.61 0.779 32.15 0.856
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3.2 Resolution

A deficiency of many existing denoising algorithms is that less-than-ideal filtering leads to the
loss of fine details in the image. For example, when using low-pass filtering, a thorough noise
correction can come at the expenses of resolution?. This is because some of the high frequencies
of the sample can be eliminated together with the noise frequencies.

To avoid such issues, ACsN uses self-similarity to sort noise from the features of the samples.
We have tested it by comparing the image resolution before and after noise correction in both
simulated and experimental data. The results confirmed that the algorithm does not induce any
loss of resolution (see Supplementary Figures 15-17).

We used Gaussian fitting to evaluate the width of the point-spread function (PSF) and
detected no additional blurring after to the denoising process. For fair comparison between

ag (PX)
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Supplementary Figure 15: Simulations show no loss of resolution in denoised images. (a) Simulated noisy sCMOS
image of fluorescent beads. The image size is 128x128 pixels. (b) Denoised image using ACsN. (c-e) Intensity
profiles of the beads marked in (b) obtained by averaging over the vertical dimension of each bead image. Gray
and red dots represent the values obtained by images (a) and (b), respectively. For each set of points, the
corresponding Gaussian fit is plotted. (f) Plot of the standard deviation (cc) of the bead profiles obtained by

Gaussian fitting in both (a) and (b). The error bars represent the confidence range of the fitting algorithm. Scale
bar: 25 pixels.
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noisy and corrected data, the intensity profiles were generated by averaging over the vertical
dimension of each bead image.

It is important to notice that both the simulations and the experimental images used in the
resolution assessment are strongly non-uniform and, therefore, feature a highly spatially-
variant noise. However, this did not affect either the performance of ACsN nor the final
resolution of the denoised images.

I
Supplementary Figure 16: Resolution preservation in single molecules frames. Representative single molecule

sCMOS image of Alexa Fluor 647 before (left) and after (right) denoising with ACsN. It can be noted that the sample
is strongly spatially-variant. However, such non-uniformity of the image does not affect the performance of ACsN

and, thus, resolution of the image. Scale bar: 1pm, 500 nm (inset).
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Supplementary Figure 17: Experimental images of single molecules. (a,d,g,j) Noisy sCMOS images of Alexa Fluor
647. (b,e,h, k) The corresponding single-molecule images after denoising with ACsN. (¢,fil) Intensity profiles
generated by averaging over the vertical dimension of each molecule image. Gray and red dots represent the values
obtained by images before and after ACsN processing, respectively. For each set of points, the corresponding
Gaussian fit is plotted and the relative standard deviation (cc) for both raw (in black) and denoised (in red) images

is reported on the side. Scale bar: 200 nm.
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3.3 Reduction of pixel fluctuation

A key feature of the camera noise is that it induces fluctuations at every pixel over time. This
effect can become prohibitive for many imaging applications at low light levels and detrimental
for quantitative analysis of time-lapse data. An effective noise correction approach should
address this issue to maximally reduce pixel fluctuations that are not related to the sample.

The fluctuation of each pixel, o, can be measured as the standard deviation of its value in time.
The standard deviation map of time-lapse sSCMOS frames before and after noise correction
using ACsN shows a substantial reduction of the temporal fluctuation of the pixel values. This
reduction is especially prominent in the background pixels, where no signal is expected.
Residual fluctuation is clearly separated from the background by the algorithm and can be
observed in correspondence of the sample. However, this residual fluctuation can be more than
one order of magnitude weaker than the fluctuation observed in the raw images.

Recalling that the signal of an ideal camera is still affected by fluctuations due to the photon
shot noise (see Supplementary Note 1), we have compared the pixel fluctuation of our sCMOS
camera after ACsN processing with the expected value of an ideal one, op = VS (see
Supplementary Figure 18). The signal, S, is obtained for each image by averaging 100 frames
acquired at low frame rate (9 Hz).

As expected, the magnitude of fluctuation in the raw images increases with the frame rate,
and, in turn, with the predominance of sCMOS-related noise due to the low intensity of the
fluorescence signal (see gray squares in Supplementary Figure 18c, f and i). However, after
ACsN processing, the magnitude of fluctuation is visibly lowered and becomes comparable to
the expected values of an ideal camera, o/op~ 1 (see red circles in Supplementary Figure 18c, f
and i). In some cases, when the video filtering is active, the denoising performance can be
improved so that it can achieve even a supra-ideal performance because both readout and
photon noise contributions have been corrected in the algorithm (o/op<1).
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Supplementary Figure 18: Pixel fluctuation after ACsN processing is comparable to that of an ideal camera. (a,d,g)
Fluctuation maps calculated over 100 frames of three different images of microtubules acquired with 1-ms
exposure time. (b,e,h) Fluctuation maps of the same image stacks after ACsN processing. (c,f,i) Pixel fluctuation
due to camera noise in raw images becomes more and more relevant with the frame rate (gray squares). This effect
is strongly mitigated by ACsN processing (red circles), which maintains pixel fluctuation closer to the value
contributed by only the photon shot noise, i.e. as in the ideal case (dashed black line). Points and error bars in the
plots represent respectively the mean and standard deviation of the o/op ratio calculated over fluctuation maps
corresponding to different exposure times. In some cases, such as when the video filtering is active, ACsN shows
an improved denoising efficiency, resulting in the presence of values of o/op< 1. Scale bar: 3 um.
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3.4 Dependency on the incoming photon flux

The challenge for denoising in cell imaging is being able to obtain a thorough correction of the
noise while preserving sample’s details and photon count. Therefore, the performance of noise
correction is intrinsically related to the photon flux of the input image. Indeed, at low photon
counts, such details start to be comparable to the noise levels and, most of all, the fluctuations
of the photon shot noise become significant.

In this section, we assessed the dependence of the denoising performance on the intensity of
the emission light and the corresponding improvement of the image quality and SNR of ACsN
image restoration. First, we assessed the performance of image restoration using simulations
in order to observe the robustness of ACsN with the two main sources of camera noise, i.e.
readout noise and photon noise.

We used four simulated sequences of fluorescent Siemens stars to predict the ACsN
performance with different photon fluxes. The maximum number of photons for each sequence
was 5, 10, 15, and 20 photons per pixel (see Supplementary Figure 19a). In all the cases, we
observed a good noise correction of the mixed Poisson-Gaussian noise (see Supplementary
Figure 19b). In particular, the average quality of the denoised images shows few variations
down to ~10 photons per pixel or less, with some loss of quality only when the photon flux is
less than 5 photons per pixel (see Supplementary Figure 19c-d).

Using the standard caliber target and a Hamamatsu ORCA Flash 4.0 v3 sCMOS camera, we
observed a similar trend with respect to the simulations, with a valid performance of ACsN
down to ~10 photons per pixel (see Supplementary Figure 20). In addition, similar results were
observed using biological samples and the same camera (see Supplementary Figure 21).

Thus, we see a robust noise correction down to ~10 photons per pixel in both simulations and
experimental data. In particular, simulations show a good correction of the photon noise within
this intensity range, supporting the validity of our model. When the photon flux is very low
(~3 photons per pixel), the Poisson distribution diverges from its Gaussian approximation and
the denoising could fail to correct the photon shot noise. At the same time, the relative variation
of readout noise and photon shot noise in the raw data is such that, when the photon flux is
<10 photons per pixel per frame, the SNR becomes very low. For example, the intrinsic error of
the signal given by the photon shot noise is op = VS >30%, as described in Supplementary
Equation (2) in Supplementary Note 2. In addition, for most sSCMOS cameras the readout noise
is stronger at high frame rates (typically at 100 Hz), so that the image degradation at a short
exposure time is a result of both lower photon budget (i.e. stronger noise influence) and worse
camera performance.

Therefore, when the photon budget is low, the details of the underlying structure of the
sample are largely submerged by the noise, making it challenging to generate a representation
where the signal is sparser than noisy pixels, and hindering further image restoration (see
Supplementary Note 3.5). For this reason, and since a realistic sample is not uniform, we
consider a median flux of 10 photons per pixel as the practical limit for ACsN denoising
applications.
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It should be noted that the emission photon flux in fluorescence microscopy can vary
depending on both the power of the excitation light and the specific fluorophore observed.
Different examples of the performance of ACsN in many techniques of fluorescence
microscopy are shown in the Results section in the main text.
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Supplementary Figure 19: ACsN image restoration of simulated data. Representative frames of 4 sequences of 100
simulations of a fluorescent Siemens star in presence of mixed Poisson-Gaussian noise before (a) and after (b) ACsN
denoising. The maximum photon flux for each sequence (clockwise from the top left quadrant to the bottom left
quadrant) is 5, 10, 15, and 20 photons per pixel, respectively. Plots of the average SSIM (c) and PSNR (d) calculated
for each sequence of the simulated data before (gray) and after (red) ACsN denoising. The error bars represent the
corresponding standard deviation and are smaller than the size of the markers. Scale bar: 1 pm.
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Supplementary Figure 20: ACsN image restoration of caliber structures at varying light levels. (a-d) Illustrative
frames of four sequences of 50 images of a fluorescent USAF target. Each sequence was acquired with the same
illumination intensity but at a different exposure time: 10 ms (a), 5 ms (b), 2 ms (c), and 1 ms (d). (e-h) The
corresponding denoised images of (a-d) using ACsN, respectively. (i) Reference frame used as the ground truth.
This frame was obtained by averaging 50 frames acquired with a 100-ms exposure time. (j,k) Plots of the PSNR and
the SSIM as a function of the emission intensity. For fair comparison, the emission intensity was evaluated as the
average intensity calculated only in the bright (fluorescent) areas of the USAF target and after offset and gain
correction. The vertical error bars represent the standard deviation of the PSNR (j) and the SSIM (k). The horizontal
error bars represent the standard deviation of the evaluation of the emission intensity. Scale bars: 50 pm.
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Supplementary Figure 21: ACsN image restoration of biological samples at varying light levels. Three sequences
of 100 images of microtubules of HeLa cells were recorded using TIRF microscopy with the same illumination
intensity but at different exposure times: 10 ms (a), 5 ms (b), and 1 ms (c). Each series was processed with ACsN.
A representative frame for each sequence is shown in (d-f), respectively. It can be observed that noticeable
improvement in image quality can be recovered at low light levels (e.g. <15 photons per pixel in (c)), despite the
loss of some fine details. (g, h) The plots of the SSIM (g) and the PSNR (h) as a function of photon counts per pixel.
Each point represents the average value obtained from each sequence of 100 images and each error bar represents
the corresponding standard deviation. The quantitative measurement shows substantial improvement in image
quality using ACsN, as well as the influence of the photon flux in the restoration, consistent with the observations

in (d-f). Scale bar: 3 um.
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3.5 Sampling rate

In a diffraction-limited optical system, the sampling frequency should be strictly higher than
the Nyquist frequency?, which means that the pixel size of the image should be preferably
selected to be no more than half of the system resolution. However, this is not always the case,
e.g. when a wider field-of-view is preferred to an optimal resolution. In this section, we
investigated the performance of the ACsN algorithm under various sampling rates. We define
the sampling rate as the ratio between the system resolution, given by the Rayleigh criterion
(0.61A/NA) and the effective pixel size of the image (physical sensor pixel size divided by the
magnification), so that the minimum sampling rate according to the Nyquist criterion should
be greater than 2.

Using numerical simulations, we found that ACsN could tolerate a wide range of sampling
rates from 1.2 to 2.9 (see Supplementary Figure 22a-f). Over-sampling can improve the self-
similarity in the image. However, it also lowers the photon flux per pixel, thus decreasing the
SNR of the original frames, consequently enhancing the influence of the noise (see 3.4
Dependency on the incoming photon flux). Thus, the denoising performance is a balance
between the improvements in self-similarity and the loss of SNR (see Supplementary Figure
22g). On the other hand, the correction performance gradually decreases also when the image
is significantly under-sampled, i.e. sampling rate less than 1.5 (see Supplementary Figure 22h).
This is because with under-sampling the observed object tends to a delta function. As a result,
it has a less sparse representation in the transform domain and, frequency-wise, it becomes
more and more similar to a noisy pixel. However, this effect is mitigated by an improvement

Sampling:29]c
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Supplementary Figure 22: ACsN denoising performance at different sampling rates. Simulated sCMOS frames
and relative denoised images for various sampling rates of the detector, namely: 2.9 (a,b), 2 (c,d), and 1.2 (e,f). (g)
Plot of the PSNR of simulated noisy images of beads before and after denoising, respectively in gray and red dots.
(h) PSNR improvement after ACsN denoising at different sampling rates. Scale bars: 2 um.
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of the SNR of the original image correlated to the under-sampling (see Supplementary Figure
22g).

Likewise, experimental data show the robustness of ACsN for low SNR with oversampling
and no significant loss of signal with under-sampling (see Supplementary Figure 23). It is
important to notice that although the improvement of self-similarity due to over-sampling
balances the loss of SNR, we observe a similar or better denoising performance at lower
sampling rates (see Supplementary Figure 23e-f). Indeed, under-sampling increases the
number of photons per pixel, thus improving the SNR of the input frames (see Supplementary
Figure 24a-c). Here, the enhanced SNR compensates for the lower self-similarity so that under-

Raw Raw (bin 2x2) . Raw (bin 4x4)
Sampling: 3.88 Sampling: 1.94 Sampling: 0.97
SSIM: 0.23+0.03 SSIM: 0.45+0.03 SSIM: 0.6910.02
PSNR: 152 dB PSNR: 24.411.5dB PSNR: 33.110.7 dB

ACsN 4 ACsN (bin 2x2) ¥ ACsN (bin 4x4)
Sampling: 3.88 Sampling: 1.94 Sampling: 0.97
SSIM: 0.938+0.007 SSIM: 0.945+0.004 SSIM: 0.973%0.002
PSNR: 33.7+0.9 dB PSNR: 34+1.5dB PSNR: 35.3+0.6 dB

Supplementary Figure 23: ACsN denoising performance with different sampling rates. (a,d) Representative
frames before (a) and after (d) ACsN denoising of a sequence of 100 frames of fixed mithocondria in bovine
pulmonary artery endothelial (BPAE) cells. The images were acquired using 100x objective (NA 1.45), the
fluorescence emission peak wavelength was 599 nm, and the camera pixel size 6.5 um. This is well over-sampled
with a sampling rate of 3.88. (b,e) Representative frames of the same sequence in (a) after a 2x2 pixel binning of
the raw data before (b) and after (e) denoising. This effectively halves the sampling rate. (c,f) Representative frame
of the same sequence in (a) after a 4x4 pixel binning of the raw data before (c) and after (f) denoising. It should be
noted that even if the over-sampling in (a) and (d) is expected to enhance the image self-similarity, the image
quality is also affected by the loss of SNR. On the other hand, the under-sampling in (c) and (f) benefits from the
SNR improvement due to the higher photon count per pixel and shows better SSIM and PSNR values, although
the performance is affected by the loss of signal details. The reference images for each sampling rate were obtained
by averaging the image series of the corresponding sampling rate. Scale bar: 5 pm.
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sampling does not seem to affect the quality of the reconstruction (see Supplementary Figure
24d-f). However, the image details are reduced by the larger pixel size.

In summary, experimental data together with the results obtained by the simulations support
the viability of ACsN processing in a wide range of the sampling rate normally adopted for
most fluorescence microscopy. The upper limit for range of acceptable sampling rates is mainly
related to the photon flux necessary to maintain a feasible SNR of the input data. Whereas, the
lower limit is given by the cost in terms of loss of details. For these reasons, a sampling rate as
close as possible to the Nyquist limit is generally recommended as a good tradeoff between
SNR and detail preservation.

Ao

Raw (bin 2% Raw (bin 4x4).’
Sampling: 0. 9 Sampling: 0.5 .
SSIM: 0. 821()" SSIM: 0. 937!:9

. PSNR: 33.2#1. 4d~ PSNR: 39.5%1. X | d*

Raw * o b
Sampling: 1,9, o N
SSIM: 0. 611(!&3»

. PSNR: 23.8%1.8 dm

ACsN+

Sampling: 1.9 Q"
SSIM: 0.79540.018 )
PSNR: 34.0£0'; dBg

M f
ACsN~(bin@ by St ACsN (b|n4

Sampling: 0.9 5 Sampling: 0.5 b B
SSIM: 0.918@‘,\'6 4 SSIM: 0.9881D:
 PSNR: 38.0%0.5 d* PSNR: 44.2+04 dB‘

Supplementary Figure 24: ACsN denoising performance with under-sampling. (a,d) Representative frames before
(a) and after (d) ACsN denoising of a sequence of 50 frames of fixed mithocondria in bovine pulmonary artery
endothelial (BPAE) cells. The images were acquired using 10x objective (NA 0.3). The peak wavelength of the
fluorescence emission was 599 nm, and the camera pixel size 6.5 pm. (b,e) Representative frames of the same
sequence in (a) after a 2x2 pixel binning of the raw data before (b) and after (e) denoising. (c,f) Representative
frames of the same sequence in (a) after a 4x4 pixel binning of the raw data before (c) and after (f) denoising. The
under-sampling improves the SNR, largely suppressing the noise in (c) and (f). However, this comes at the
expenses of a loss of details, which is evident in the insets compared to (a,b,d,e). The reference images for each
sampling rate were obtained by averaging the image series of the corresponding sampling rate. Scale bars: 50 um
(a), 20 um (a inset).
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3.6 Self-similarity of the input image

Unlike natural images, fluorescent images of biological samples are highly specified, exhibiting
precisely labeled molecular targets or structures in cells. Thus, each fluorescent image usually
features only a specific object recurrent across the field of view, resulting in non-locally
repeated self-similarity that can effectively enhance the performance of the ACsN algorithm
(see Supplementary Figure 25). This repetition is used to generate a sparser representation of
such features and, then, to improve the efficiency of denoising (see Supplementary Figure 25c
and d). On the other hand, during the grouping phase, when the different patches are matched,
there is no prior assumption about the similarity of the input image. Instead, the algorithm
evaluates such similarity according to a predetermined metric, see Supplementary Equation
(11) in Supplementary Note 2.3, and the estimated noise variation (see Supplementary Note
2.4). This means that only the patches that have enough similarity are grouped and processed
collectively. So, if the input image has no self-similarity, all the patches are processed
individually.

In this section, we demonstrate the dependence of the ACsN denoising performance on the
usage of the self-similarity of an input image. To this end, it is important to notice that disabling
the grouping step of ACsN is equivalent to the denoising of an image with no self-similarity.
In addition, the noise level can decrease the self-similarity of the input image independently
from the characteristics of the observed sample. For example, the image in Supplementary
Figure 25e shows a relatively high level of noise and, as a result, a lower level of self-similarity
than the real structure (see insets in Supplementary Figure 25a and e). In this case, only few
patches are grouped together because patches that show a level of similarity below the
threshold value are not forced to match (see Supplementary Notes 2.4 and 3.1). For this reason,
when the image self-similarity is low, ACsN tends to perform as a non-collaborative sparse
tilter, which explains the similarity between Supplementary Figure 25f and g. Nonetheless, the
extension of the search window in the temporal dimension can further improve the grouping
efficiency, offering a better image restoration (see Supplementary Figure 25h and
Supplementary Note 2.5). We observed the same behavior also with the different structures
(lines, squares and numbers) of a USAF target (see Supplementary Figure 26). Once again, here
we can see that the use of 2D and 3D grouping improves the performance of ACsN in
comparison to non-collaborative filter (see Supplementary Figure 26).

We observed that self-similarity in multiple dimensions, and especially time, can be
particularly beneficial for the efficiency of ACsN block matching and grouping (see
Supplementary Figures 25 and 26). Furthermore, we did not observe the appearance of any
tfeature artifacts due to imperfect matching between dissimilar patches. However, since
biological samples are heterogeneous, the level of self-similarity can vary for different
structures. For this reason, we implemented a no-reference metric of the denoising quality,
which can help the users to assess any variability of the ACsN denoising performance (see
Supplementary Note 7).
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Finally, given the intrinsic redundancy of the labeling process, we expect collaborative
filtering to be especially helpful with fluorescence imaging. Here, we observed this by using
fluorescently stained microtubules, which are generally used as a reference structure because
of their well-known features. Nonetheless, we have provided various examples of common
structures imaged with fluorescence microscopy that have different features and
dimensionality such as actin bundles, mitochondria, filopodia, lamellipodia, fluorescent
particles, and photoswitching fluorescent dyes.
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Supplementary Figure 25: Sample’s self-similarity due to noise and ACsN denoising performance. (a) The
reference image was obtained by averaging 100 frames of fixed microtubules of a HeLa cell recorded with an
exposure time of 111 ms. (b,e) The same cell in (a) recorded with an exposure time of 10 ms and 5 ms, respectively,
exhibiting different SNRs and thus influence of noise. (c,f) Denoised images of (b) and (e), respectively, obtained
with ACsN without grouping (the maximum number of patches in each group was set to 1). Please, note that this
is equivalent to use ACsN without considering self-similarity or an object with no self-similarity. (d,g) Denoised
images of (b) and (e), repectively, obtained allowing 2D grouping. While (d) shows an improvement over (c), this
does not exhibit as significantly for (g) over (f). This is related to the lower self-similarity of (e), due to the
distruptive effect of the noise. The consistence between (f) and (g) also implies that the algorithm does not force
any block matching where there is dissimilarity between patches. (h) The 3D grouping feature of ACsN compares
patches in a bigger window, substantially improving the effectiveness of image restoration. The correlation maps
of each image are reported in the corresponding insets. The values in the maps represent the Pearson’s linear
correlation coefficients calculated between each pair of columns. It is observed that an increased noise level leads
to lower self-similarity. Scale bar: 3 pm.
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Supplementary Figure 26: Sample’s self-similarity due to noise and ACsN denoising performance. (a) The
reference image of a USAF target was obtained by averaging 100 frames with an exposure time of 100 ms. (b,f)
The same region in (a) recorded with an exposure time of 10 ms and 2 ms, respectively. (c,g) Denoised images of
(b) and (f), respectively, obtained with ACsN without grouping (the maximum number of patches in each group
was set to 1). Please, note that this is equivalent to use ACsN without considering self-similarity or an object with
no self-similarity. (d,h) Denoised images of (b) and (f), repectively, obtained allowing 2D grouping. While (d)
shows an improvement over (c), this does not exhibit as significantly for (h) over (g). This is related to the lower
self-similarity of (f), due to the distruptive effect of the noise, and shows how the algorithm does not force any
block matching where there is dissimilarity between patches. (e,i) The 3D grouping feature of ACsN compares
patches in a bigger window, substantially improving the effectiveness of image restoration, compared to (d) and
(h), respectively. The correlation maps of each image are reported in the corresponding insets. The values in the
maps represent the Pearson’s linear correlation coefficients calculated between each pair of columns. It is observed
that an increased noise level leads to lower self-similarity. Scale bar: 50 pm.
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Supplementary Note 4. Additional application notes

4.1 Deconvolution microscopy

Image deconvolution is widely used in optical microscopy, from the restoration of low quality
images to the improvement of super-resolution techniques*. However, the deconvolution
process can be very sensitive to the noise in the input image, and a low SNR, or a non-
appropriate estimation of the noise, can degrade the performance of many commonly used
algorithms. In this section, we demonstrate the implementation of ACsN denoising can
effectively prevent non-fluorophore-associated noisy pixels, thus significantly improving the
subsequent downstream deconvolution analysis.

For example, Richardson-Lucy (RL) deconvolution is one of the most popular method
appropriate to improve density estimates in fluorescence imaging®?. RL deconvolution
estimates the true density by an iterative procedure, improving the likelihood that the estimate
is correct with every iteration assuming Poisson noise.

However, sCMOS-related noise can be detrimental for the effectiveness of RL deconvolution
and can hinder any resolution recovery (see Supplementary Figure 27a, ¢, and e). On the other
hand, using ACsN prior to deconvolution to reduce the noise enables the RL algorithm to
perform in noise conditions closer to the ideal case of the pure Poisson noise (see
Supplementary Figure 27b, d, and f). This is reflected also in a remarkable improvement of the
Resolution Scaled Pearson coefficient (RSP), which provides a score of the global image
quality?.

Another popular analytical method for image restoration is super-resolution radial
fluctuations (SRRF)?. This method allows the user to achieve super-resolution using wide-field,
confocal or TIRF microscopes with illumination orders of magnitude lower than many super-
resolution techniques. Here, the analysis of a sequence of images acquired in a standard wide-
field or TIRF microscope directly reconstructs a super-resolution image without fluorophore
detection and localization. SRRF assumes the image is formed of point sources convolved with
a PSF that displays a higher degree of local symmetry than the background. Unlike single-
molecule localization microscopy (SMLM), SRRF calculates the degree of radiality across each
frame in an image sequence on a sub-pixel basis. This radiality distribution is capable of

distinguishing two Gaussian PSFs separated by ~0.7 times the Gaussian standard deviation.

However, the radiality map of a full image includes also a number of non-fluorophore-
associated radiality peaks, as transient local radial symmetries can occur in image noise,
especially when using low-intensity illumination (see Supplementary Figure 2a-b). This issue
is usually addressed by frame averaging to generate a super-resolution frame from an image
sequence. Typically, to generate one single super-resolution image, a sequence of at least 100
frames is required (see Supplementary Figure 2c). The maximum temporal resolution reported
is 1 Hz?.

On the contrary, ACsN can reduce the non-fluorophore-associated peaks from wide-field
images without any temporal averaging. Therefore, a high-quality super-resolution image can
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be readily obtained with only a single ACsN-processed frame (RSP 0.927, see Supplementary
Figure 2d-i). This implies that ACsN processing can enable us to use SRRF and wide-field
microscopy to generate super-resolution images with up to two orders of magnitude of
improvement in temporal resolution. Here, we demonstrated the possibility to obtain super-
resolution images using frames recorded at 200 Hz, which is 200 times faster than currently
reported.

Lately, an alternative approach for image restoration based on machine learning has been
proposed?. This consists in the development of content-aware image restoration (CARE)
networks, which are adapted to a specific experimental setup. This strategy is based on the
hypothesis that they produce better results than content-agnostic methods.
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Supplementary Figure 27: ACsN improves Richardson-Lucy (RL) deconvolution. (a) TIRF image of
microtubules aquired with an exposure time of 5 ms. (b) ACsN-processed image of (a). (c,d) Deconvolved
images of (a) and (b), respectively. Both deconvolutions were performed using the same RL algorithm and 10
iterations. (e,f) Profiles of two microtubule filaments corresponding to the dashed line in (b), respectively
without (a,c) and with (b,d) ACsN processing. Gray and red lines in (e) and (f) correspond to the profiles
before (a,b) and after (c,d) RL deconvolution, respectively. The corresponding Resolution Scaled Pearson
(RSP) coefficients were calculated and shown for (c) and (d). Scale bar: 4 pm.
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A key point for the reusability of CARE is the possibility to use synthetic data to train the
network for the restoration of a certain type of image. For example, using synthetic ground-
truth images of tubular meshes resembling microtubules, it is possible to obtain super-
resolution frames of microtubules from wide-field images of comparable or better quality than
SRRF.

However, also in this case, the quality of image restoration deteriorates when noise becomes
prominent. Even with low levels of noise, some image details start to disappear until a drastic
failure of the image recovery in presence of stronger noise (see Supplementary Figure 28a-h).
ACsN processing can recover low-SNR images (see Supplementary Figure 28i-1), thus enabling
a subsequent CARE reconstruction for low-light-level, high-frame-rate, noisy images (see
Supplementary Figure 28m-t). This is confirmed by a higher image quality of the
reconstructions (RSP > 0.94) and an overall improvement of the reliability of the image
restoration, which is also reflected by the general reduction of the ensemble disagreement
across the images (see Supplementary Figure 28 and Supplementary Table 7). The evaluation
of the ensemble disagreement is provided by the CARE software for each pixel of the
deconvolved images. In Supplementary Table 7, the mean, maximum and mode of the
disagreement values for each image in Supplementary Figure 28 are reported. In all the cases,
the use of ACsN prior to CARE results in lower ensemble disagreement, in accord with the
improvement of the RSP values.

In addition, it should be noted that the values obtained for Supplementary Figure 28h
represent an exception as a result of the failure of an accurate reconstruction. This is due to the
intrinsic bias of the disagreement score rather than the effective image quality, because the
score evaluates the internal variance of the result but not the absolute accuracy.

Indeed, to use CARE for denoising, one should train the network with sufficient noisy data.
This is actually both an essential and a challenging step in practice for learning-based systems¥.
Here, we showed that the use of ACsN prior to CARE enables high-quality image restoration
even when the training on low-SNR data is lacking or insufficient.

In summary, here we have demonstrated the advantages of combining ACsN denoising with
three freely-available deconvolution packages, including CARE deconvolution based on
synthetic learning. This is particularly interesting because it allows using a pre-trained network
for learning-based deconvolution in a wider range of imaging conditions, provided that the
optical system is compatible. For further discussions about the ACsN and CARE denoising,
please refer to Supplementary Note 8.
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Supplementary Figure 28: ACsN denoising improves the accuracy of machine learning based deconvolution. TIRF images
taken from four sequences of fixed microtubules acquired with different exposure time: (a)111 ms, (b) 10 ms, (c) 5 ms, and
(d) 1 ms. (e-h) Deconvolved images obtained averaging 10 frames processed with CARE from the sequences in (a-d),
respectively. Loss of details can be noticed in (f) and (g) in comparison with (e), while in (h) CARE completely fails to reveal
the object. The corresponding worsening RSP values are shown. (i-1) ACsN denoising of sequences in (a-d), respectively,
maintaining consistent image quality for different exposure times. Each image was obtained without frame averaging. (m-
p) Deconvolved images obtained averaging 10 frames processed with CARE from the sequences in (i-l), respectively,
recovering previously missing details. The corresponding consistent RSP values are shown. (q-t) Profiles of two microtubules
corresponding to the white dashed line in (e). In each plot are shown the profiles measured in the original images (gray solid
line), CARE (black line), ACsN (gray dashed line) and ACsN+CARE (red line). As seen, using ACsN prior to CARE enhances
the quality of the deconvolution against noise and mitigates the loss of details. Scale bar: 4 pm.



Supplementary Table 7: Reliability of the learning-based deconvolution. Here are reported
the mean, maximum and mode of the ensemble disagreement evaluated by CARE for each
pixel of the deconvolved images in Supplementary Figure 28.

Ensemble Disagreement

Raw + CARE ACsN + CARE
texp (MS) Mean Max Mode Mean Max Mode
111 0.0235 0.280 5.46e-4 0.0227 0.249 4.87e-4
10 0.0353 0.448 8.75e-4 0.0284 0.273 5.33e-4
0.0399 0.477 9.32e-4 0.0275 0.275 5.38e-4
1 0.0073 0.397 7.76e-4 0.0241 0.241 9.43e-4
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4.2 Single-particle tracking

Single-particle tracking (SPT) is a key technology that provides researchers with the ability to
directly observe molecular behaviors at the level of single molecules in living cells under
certain limitations of SNR and spatial and temporal resolutions®'. SPT provides access to single
molecule behavior by detecting and following individual particles in a time series of images.
However, the usefulness of the trajectories obtained depends on localization precision,
temporal resolution and observation time. These three factors are interconnected and
ultimately coupled to the photon budget delivered by the fluorescent label®.

To demonstrate ACsN in SPT, we recorded the movement of a fluorescent bead diluted in
water. The concentration of beads was low in order to avoid ambiguities in particle localization
and simplify the tracking task. This way, any eventual error in particle localization could be
ascribed to the low SNR. We analyzed a sequence of 150 frames acquired with an exposure
time of 1 ms before and after ACsN processing (see Supplementary Figure 29a and b
respectively, Supplementary Movie 3) using standard nearest-neighbor linking®. From the plot
in Supplementary Figure 29¢c, it can be observed that localization errors and gaps in the
trajectory (crimson diamonds) are related to the low SNR of the raw data. The ACsN-denoised
sequence, instead, shows an enhanced SNR and no gaps in the trajectory (see Supplementary
Figure 29c¢, black line). This is important because localization errors are more probable when
the level of noise is comparable to the brightness of the observed particle. In fact, the tracking
obtained using the raw data resulted in 6 different trajectories (see Supplementary Figure 29d)
due to the high noise level that led to missed localizations in certain frames. In contrast, the
denoised sequence yielded one single track of the entire 150 time points (see Supplementary
Figure 29e). The reduction of image noise and the subsequent improvement of SNR provide a
better accuracy of the particle localization and then a better estimation of the bead’s lateral
displacement with sub-pixel sensitivity (see Supplementary Figure 29f-h). This is in agreement
with an improvement of the localization precision that we observed using a simulated sequence
of fixed beads (see Supplementary Figure 30a-c). The tracking of the denoised data yielded
values of the frame-by-frame displacement more peaked around the true value (zero) than the
noisy sequence (see Supplementary Figure 30d). Indeed, there is a significant decrease of both
the median displacement and the 3™ quartile after ACsN denoising (see Supplementary Figure
30e). We considered the outliers of all the values either 3 time the interquartile range (IQR) or
more above the third quartile or 3 time the IQR or more below the first quartile.

To push further the performance of SPT, it is also possible to use ACsN in combination with
more complex algorithms®, even if that would imply a number of a priori assumptions about
the sample and a more complicated data analysis.

Tracking molecular events in 3D is notably more challenging, but highly desirable in order to
extend SPT experiments to intracellular or nuclear compartments. Therefore, much effort is
focused on the implementation of optical set-ups, labeling strategies and dedicated data
algorithms for tracking the motion of individual particles in 3D. Measuring the size and shape
of the defocused intensity spot, it is feasible to infer the z-position of the particle. However,
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with a conventional microscope, the absolute z-position (above or below the focal plane) cannot
be unambiguously determined. Moreover, when the point source is close to the plane of focus,
the resulting image profiles show negligible change in their shape thereby providing very little
information about the z location.

Using biplane microscopy, the point source is simultaneously imaged at a second focal plane
that is shifted by 500 nm from the first one®¢. This way, it is feasible to increase the localization
precision in the axial direction even when the point source is close to the focal plane. In
particular, the accuracy of the z-position determination remains relatively constant for a range
of z values. Nonetheless, this accuracy depends on the precision to estimate the size of the
intensity patterns in the image where the sample is defocused, which becomes deteriorated by
the noise with the distance from the focal plane since the intensity patterns become weaker?.
In fact, when these out-of-focus patterns become dimmer the localization precision depends
greatly on the SNR of the image.

We have shown that the quality of the out-of-focus patterns can be maintained also in case of
low SNR by ACsN denoising (see Supplementary Figure 31a-c, Supplementary Movie 4). This
yields a substantial improvement of the SNR especially in the images where the particle
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Supplementary Figure 29: ACsN denoising reduces mislocalizations in single-particle tracking. (a)
Representative frame of a sequence of 150 frames following the motion of a 1 um fluorescent bead diffusing in
water. Exposure time: 1 ms. (b) The same frame shown in (a) after ACsN denoising. (c¢) SNR calculated for each
localization in each frame. The colors correspond to the corresponding tracks in (d) and (e). The crimson
diamonds correspond to mislocalizations in the analysis of the raw data. (d-e) Results of particle tracking before
and after denoising, respectively. Different colors represent separate tracks. (f,g) Zoomed-in image of the tracked
particle before and after denoising in the frame corresponding to the position marked by the red arrow in (d)
and (e), respectively. (h) Histogram and statistical analysis showing the distribution of the displacement
evaluated for each couple of linked time points in (d), gray bars, and (e), red bars. Scale bars: 1 um.
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appears more defocused, allowing for a more precise identification of the intensity pattern (see
Supplementary Figure 31d-k).
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Supplementary Figure 30: ACsN denoising improves the localization precision. (a) Simulated
fluorescent beads. The same frame was repeated 100 times and dynamic readout and photon
noise were added to each frame to simulate the acquisition of still beads. (b) Representative
frame after noise addition. (c) The same frame shown in (b) after ACsN denoising. (d)
Histogram and statistical analysis of the displacements evaluated from both the noisy (gray)
and denoised (red) data. g3 indicates the third quartile, within which are contained 75% of the
data. (e) Box and whiskers representation of the distributions shown in (d). It is interesting to
notice that the notches around the two median values do not overlap, meaning a statistical
significance in their difference (>95%). GT: Ground truth. Scale bar: 1 pm.
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Supplementary Figure 31: Three-dimensional single-particle tracking with biplane microscopy. (a-c)
Representative frames of a sequence of 500 images following the diffusion of a 1 um fluorescent particle in water
using biplane microscopy. The frame rate is 1 kHz and the distance between the two focal planes is 500 nm. (d-g)
Zoomed-in images on the diffusing particle in the most defocused image (plane 1) in 4 consecutive frames. (h-k)
the same particle in (d-g) after ACsN denoising. The insets in (d-k) display the comparision in the intensity

profiles. Scale bars: 2 um (a), 1 um (d).
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Supplementary Note 5. Comparison with the state-of-the-art

The noise in digital images defines the minimum expected variance in the measured intensity
values, so that differences in measurements that lie within the noise variance cannot be
attributed to the specimen?®. In addition, biological specimens have a certain level of natural
variability, so variance seen in measurements made on different cells results from both the
biological variability and measurement errors. For this reason, it is necessary to devise
denoising strategies that can reduce the inaccuracies and imprecisions introduced by the noise
during acquisition with minimal assumptions about the sample itself.

Comparison with block matching algorithms. Our method is a novel implementation of non-local
means for denoising, specifically designed to address sCMOS-related noise in fluorescence
microscopy. The novelty of the ACsN algorithm essentially resides in the combination of a
system-aware approach with content-adaptive sparse filtering. The former is achieved by
camera calibration and OTF estimation, while the latter is obtained by collaborative denoising
based on block matching!42.

During the last years, the family of block matching algorithms has been extensively adopted
in the processing of natural images, but so far it has not obtained a real breakthrough in
fluorescence microscopy®. In fact, the existing methods work in absence of any prior
information concerning the imaging system or the noise statistics (non-Bayesian approaches).
This way, they strictly rely on the preliminary grouping step, whose performance is dependent
on the SNR. Thereby, a low SNR leads to suboptimal grouping, severely affecting the image
quality®. This limitation is largely overlooked because of the typical high SNR of the natural
scenes, but becomes restrictive for fluorescence microscopy that has an exceedingly limited
photon-budget.

On the contrary, our implementation significantly advanced the approach by employing the
inherent characteristics of the imaging system and biological samples of fluorescence
microscopy. We solve the problem taking advantage of the knowledge of the microscopy
system, which is used to obtain a continuously informed analysis of noise statistics, while
collaborative filtering takes advantage of the prominent non-local similarity due to the high
specificity of fluorescent samples to maximize the efficiency of the algorithm. This results in a
thorough, quantitative correction of noise tailored to solve the generic problem in fluorescence
microscopy and to enable fast, quantitative biological observation in a wide range of imaging
conditions (see Supplementary Note 4).

This specific development allows ACsN to perform substantially better quantitative
denoising of microscopy images than other block matching algorithms (see Supplementary
Figure 32). In particular, for experimental data we see an improvement of two orders of
magnitude in MSE (see Supplementary Figure 33). The input image used in this comparison
was acquired with a TIRF microscope and shows a group of microtubules from a HeLa cell.
The exposure time was 10 ms. Next, a sequence of 100 frames of the same field of view but with
longer exposure time, 111 ms, was taken. This sequence was averaged in order to suppress any
residual noise and used as the ground truth in the evaluation of MSE and SSIM. For fair
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comparison, we used the state-of-the-art RF3D algorithm?, because it also takes into account
the presence of the fixed-pattern noise.

Comparison with sCMOS-related denoising methods. Recently, Liu et al. proposed a noise
correction algorithm for sCMOS camera (NCS) in order to address the same problem and
demonstrated its application for wide-field microscopy*. NCS comprises two main steps: low-
pass filtering of the input image followed by the correction of pixel fluctuation. The latter is
performed by the iterative minimization of a cost function evaluated on the estimated variance
of the readout noise for every pixel. However, this approach has a few limitations. First, low-
pass filtering requires a careful calibration of the OTF of the experimental setup in order to
avoid the undesired loss of useful details of the signals, which results in image blurring. Next,
camera noise is white noise, so it is present at all frequencies and cannot be effectively removed
by low-pass filtering (but just blurred). Thirdly, the second denoising step corrects pixel values
to limit signal fluctuation but does not solve the issue of lingering noise, noticeable especially
in correspondence of the background (see Supplementary Figure 34 insets).

These limitations result in a loss of image quality and less-than-optimal noise correction. We
evaluated this using SSIM and observed that ACsN provides an improvement up to two-fold
greater than NCS (see Supplementary Figure 34). Experimental data show also a seven-fold
improvement of the mean square error (MSE) (see Supplementary Figure 35a-d) and a careful
observation of experimental images shows how the presence of lingering noise in NCS images
can hinder the recovery of fine details (see Supplementary Figure 35e-h).

Furthermore, NCS is an iterative algorithm and this impairs its computational speed, which
is approximately 100 times slower than the ACsN runtime (see Supplementary Note 6). Finally,
NCS has been used for TIRF microscopy using a commonly-used sCMOS camera (Hamamatsu
ORCA Flash 4 v.3) but the algorithm has not been demonstrated for other advanced microscopy
techniques or different sensors like industrial-grade CMOS, which could be especially
interesting because they have stronger readout noise and its correction becomes more relevant.

In summary, we observed that ACsN produces more reliable results than other general-
purpose block-matching algorithms and a better suppression of camera-related noise than NCS.
In addition, unlike other denoising methods for microscopy implemented for specific cases*~3,
we demonstrated the wide scope of ACsN by showing its application in many different cases,
spanning from low-cost fluorescence imaging to more advanced techniques such as super-
resolution or lattice light-sheet microscopy. For a discussion about the limitations and notable
outlooks of ACsN, please refer to Supplementary Note 8.
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Supplementary Figure 32: Comparison of denoising results for quantitative imaging using ACsN and the state-
of-the-art block-matching denoising algorithm. (a) Simulated image of fluorescent microtubules. (b) Simulated
noisy image of (a). To simulate the fixed-pattern noise, we scaled pixel values according to a simulated sCMOS
gain map and added an intensity offset. We simulated datasets with offsets of 50 and 100 a.u., in particular, to
this image was added an offset of 100 a.u. (c) Image (b) processed with ACsN. (d) Image (b) processed with RF3D.
Notice the presence of diverse artifacts in both the signal and background areas in (d). (e) Plot of the structural
similarity index measurement (SSIM) as a function of the background noise variation. Each point represents the
average SSIM evaluated over 50 images and each error bar the corresponding standard deviation. The data
relative to the images processed with RF3D are plotted in dark and light gray, corresponding to the intensity
offsets of 50 and 100, respectively. In black and red are plotted the data relative to the images processed with
ACsN, with offsets of 50 and 100, respectively. Unlike ACsN, the block-matching denoising algorithm shows less
satisfactory performance for microscopy images and also a dependence of the efficiency on the offset value. Scale
bar: 2 um.
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Supplementary Figure 33: Comparison with state-of-the-art block-matching denoising with experimental data. (a)
TIRF image of microtubules in fixed HeLa cells. This image was obtained by averaging 100 frames of a fixed HeLa
cell acquired with an exposure time of 111 ms. The intensity of (a) has been scaled by 11x for fair comparison with
other images. (b) The same sample acquired with an exposure time of 10 ms. (c) Image (b) processed with ACsN.
(d) Image (b) processed with RE3D. The values for SSIM, MSE and PSNR in (b, ¢, d) were evaluated using (a) as the
reference image. (e-h) Zoomed-in images of the regions in (a-d) marked by the white box in (b), respectively. The
image in (g), restored using ACsN, exhibits evidently closer to (e) compared to the RF3D (h) result, in agreement
with the quantitative measurements. Scale bars: 800 nm (a), 160 nm (e).
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Supplementary Figure 34: Comparison with the state-of-the-art sSCMOS denoising. (a) Simulated image of
fluorescent microtubule filaments. (b) Simulated noisy image of (a). To simulate the fixed-pattern noise, we
scaled pixel values according to a simulated sCMOS gain map and added an intensity offset. We simulated
datasets with offsets of 50 and 100 a.u., in particular, to this image was added an offset of 100 a.u. (c) Denoised
image using ACsN. (d) Denoised image using NCS. To better compare the residual noise in both restored image,
a zoom-in of the same background region (white box) in (a-d) is shown in the corresponding insets. (e) Plot of
the structural similarity index (SSIM) as a function of the background noise variation. Each point represents the
average SSIM evaluated over 50 images and each error bar the corresponding standard deviation. The data
relative to the images processed with NCS are plotted in dark and light gray, with the intensity offsets of 50 and
100, respectively. In black and red are plotted the data relative to the images processed with ACsN, with the
offsets of 50 and 100, respectively. Each data point represents the average SSIM calculated over 100 images and
the corresponding standard deviation is shown in the error bars. It is shown that an almost two-fold
improvement of structural similarity using ACsN in comparison with the state-of-the-art. Scale bar: 2 um (a), 200
nm (a, inset) .
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Supplementary Figure 35: Comparison with the state-of-the-art sSCMOS denoising using experimental data. (a)
TIRF microscopy image of microtubules in fixed HeLa cells. This image was obtained by averaging 100 frames of
a fixed Hela cell acquired with an exposure time of 111 ms. The intensity of (a) has been scaled by 11x for fair
comparison with other images. (b) The same sample acquired with an exposure time of 10 ms. (c) Image (b)
processed with ACsN. (d) Image (b) processed with NCS. The values for SSIM, MSE and PSNR in (b, ¢, d) were
evaluated using (a) as the reference image. (e-h) Zoomed-in images of the regions in (a-d) marked by the white
box in (b), respectively. The image in (g), restored using ACsN, exhbits evidently closer to (e) compared to the
NCS (h) result, in agreement with the quantitative measurements. Scale bars: 800 nm (a), 160 nm (e).
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Supplementary Note 6. Runtime

The runtime of ACsN can vary depending on the image size and on image quality, which may
trigger the video processing step. Here we report the performance of our software under
various image sizes both with and without video processing on a desktop computer using 6
cores i7-8700, 3.2 GHz CPU (see Supplementary Table 8). Image sequences are divided by
ACsN into independent sub-sequences to allow the user to run the software also in the CPU
parallel processing mode. The data shown in Supplementary Table 8 have been evaluated
averaging the results obtained over 100 images.

Using parallel CPU computing, the processing speed for a 256x256 image is approximately
0.09 s per frame, which is 100 times faster than NCS with default setting and similar
computational power (9.03 s with 6 cores at 3.4 GHz using parallel CPU computing)*. When
the optional video modality is active, ACsN runs an additional processing step to optimize the
denoising performance and the runtime goes up to 0.43 s per frame. However, the algorithm
can automatically turn the video modality on and off in order to keep the runtime as low as
possible while preserving the image quality (see Supplementary Note 2.5). Furthermore, we
expect that the runtime can be further improved with parallel GPU programming.

Supplementary Table 8: Computational speed per frame of the ACsN algorithm in different

conditions.
Parallel mode off CPU Parallel mode (6 cores)
Image Size (px) Video off Video on Video off Video on
64x64 0.04 s 0.09 s 0.01s 0.04 s
128x128 0.10s 0.29 s 0.03s 0.13s
256x256 0.33s 1.12s 0.09 s 0.43s
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Supplementary Note 7. No-reference assessment of image quality

We have quantitatively assessed the utilization of ACsN, which results in a significant
reduction of the errors in intensity measurements given by noisy pixel fluctuations and a high
fidelity of image restoration at varying light levels and imaging conditions. We have employed
tull-reference image quality assessment metrics, such as MSE, PSNR and SSIM, to quantify the
performance of ACsN using both experimental and numerical results. These assessments have
validated the feasibility of ACsN and provided quantitative information of the denoised image
quality. However, in practice, a reference, noise-free dataset is generally not available. This
section proposes a strategy that allows for no-reference evaluation of image quality in practice.

To address this problem, blind image quality metrics are emerging*4. Blind image quality
assessment has the aim to devise strategies that can predict quality of distorted images with as
little prior information about the images or their distortions as possible. In particular, we
derived and implemented in our algorithm a metric initially proposed by Kong et al.* for no-
reference assessment of image quality (Q-score).

This metric is based on the fact that the photon shot noise and readout noise are independent
in the original image. It evaluates the image quality using a method noise image (MNI) instead
of the reference®. The MNI is evaluated as the difference between the input noisy image (I) and
the denoised image (1):

M=I1-1 (17)

Ideally, the MNI contains only the noise part so that correlation between the noisy image and
the MNI, N = p(I, M), will be higher in correspondence of the background or regions where the

Q-score = - py p

Supplementary Figure 36: Graphical depiction of no-reference assessment of image quality (Q-
score). Please notice that the noise variation can be lower across small areas so that I and [ can
be locally correlated and P can assume positive values also in correspondence of some regions

of the background.
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signal coming from the sample is constant. On the other hand, the correlation between the noisy
image and the denoised image, P = p(I,[), will be high mainly in correspondence of highly-
structured regions. In both cases, the comparison of the spatial distribution of the image

structure is evaluated as:
oaBtcC

p(4,B) = ZuC (18)
where g, and op are the standard deviations of images A and B, respectively, o,p is their cross-
correlation, and c is a small constant to ensure stability when the denominator is too small.

In regions that are dominated by structures and have large P values, the term N should be as
small as possible, and vice versa. We can measure such interdependent relationship between
them using Pearson’s linear coefficient and compute the image quality score of the denoised
image [ as the linear correlation coefficient of two structure similarity maps N and P:

Q-score = —p(N, P) (19)

where the minus indicates that the quality is higher when there is negative correlation between
N and P (see Supplementary Figure 36).

The experimental data have validated the consistency to reveal denoised image quality
between the no-reference Q-score and the full-reference scores SSIM and PSNR (for example,
see Supplementary Figure 37). This strategy provides a quantitative module for users’
assessment of image restoration quality for fluorescence microscopy, where the reference
image is not available in many practical cases.
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Supplementary Figure 37: Comparison of the no-reference Q-score with SSIM and PSNR. (a-d) Representative
frames of 4 experimental sequences of fixed microtubules aquired with different exposure times: 111 ms (a), 10
ms (b), 5 ms (c), and 1 ms (d). (e-h) ACsN denoised images of the frames shown in (a-d), respectively. (i) Plot of
SSIM, PSNR and Q-score evaluated for the images in (e-h). Each value and its corresponding error were calculated
as the average and the standard deviation over 100 frames, respectively. The results of no-reference Q-score show
a consistent trend as those of SSIM and PSNR using the average of 100 frames in (a) as the reference image.
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Supplementary Note 8. Discussion & Outlook

We have introduced ACsN, an algorithm designed for the automatic correction of sCMOS-
related noise for fluorescence microscopy. The key feature of this approach is the combined
usage of camera calibration with layered sparse filtering. This results in content-adaptive image
restoration aided by system parameters.

Other existing methods based on collaborative filtering require a prior knowledge of noise
statistics or try to evaluate it from the input images!#3%40424347 Instead, ACsN targets specifically
camera-related noise and thus performs such estimates taking advantage of the knowledge of
the imaging system and a one-time calibration of the camera sensor. This yields a more robust
and efficient performance while the layered filtering approach maximizes the correction
capacity for input sequences with low SNR.

Such system-aware strategy has also been adopted by approaches based on low-pass
tiltering*48, However, low-pass filtering by definition provides an inadequate correction of the
camera noise. In fact, as white noise is present at all frequencies, it cannot be completely
removed by the choice of a cutoff frequency, inevitably implying a tradeoff between noise
correction and detail preservation.

Recently, learning-based image denoising has been demonstrated with wide-field*, two-
photon®, and confocal fluorescence microscopy® with excellent results. Learning based
algorithms provide exceptional results and maximize the information recovered, given a
comprehensive training database with respect to the input image. However, its application is
limited by two main factors: the loss of quantitative information of the signal due to the
nonlinearity of the neural network predictions?, and the dependency on adequate training data,
which is potentially challenging for discovery of information beyond the training®. In contrast,
ACsN adapts to the content of each image by evaluating its self-similarity and sparsity. It
stands, thus, somewhat in the middle between content-aware learning-based networks and
other content-agnostic methods. This makes ACsN feasible for any images, free of existing
libraries or prior assumptions, while retaining true signal values, thus maintaining all
quantitative information for further analysis.

We have shown how ACsN performs in diverse experimental conditions, with different
sensors and for a wide range of applications, from super-resolution to low-cost and
miniaturized systems (see Supplementary Table 4). We have also demonstrated that the
restoration of images with moderate levels of noise can result in a major improvement of the
downstream analysis of, for example, deconvolution microscopy or STORM. In the latter case,
although specific algorithms for STORM reconstruction of sCMOS-based images have been
proposed®5!, ACsN gives users the advantage to address the challenge of denoising and still
choose the SMLM software that better fits their experimental conditions®. Processing time
series of both fixed and live samples, we have observed a substantial reduction of pixel
fluctuations and thus of the measurement errors. Users should be aware that such errors may
not be totally removed due to the photon shot noise, but we observed that they become
comparable to the error level of an ideal camera (see 3.3 Reduction of Pixel Fluctuation). This
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allows an acceptable denoising accuracy even at low light intensity, down to 5-10 photons per
pixel (see 3.4 Dependency on the incoming photon flux). Below such imaging conditions, the
efficiency of ACsN image restoration is reduced and its performance starts to decrease. This is
due to both the very low SNR and the validity of our noise model. In fact, we estimate the noise
variation oy assuming that photon noise can be considered locally Gaussian-distributed, which
can be safely assumed when the photon flux is greater than 5 photons per pixel.

Importantly, the threshold for acceptable restoration accuracy can vary depending on the
specific camera, specimen or imaging technique used. For this reason, we recommend to
calibrate and test the algorithm before applying it to any new type of data. In particular, users
should exercise a special care in their camera calibrations, because errors in this phase will
propagate to the whole denoising process. To help users to avoid such circumstances, an
evaluation of the restoration quality was added to the algorithm in order to identify suspicious
images where denoising may not be accurate.

In some applications, the SNR of the input sequence is improved by frame averaging during
acquisition or in post processing®. Interestingly, it has been shown that such improvement can
be successfully combined with collaborative sparse filtering®. In agreement with such results,
simulations have shown that the improvement of ACsN restoration after frame averaging of
the input image is higher than an alternative algorithm based on low-pass filtering (see
Supplementary Figure 38). In this case, it showed an average improvement of 10.6 dB in PSNR
by averaging the input image over 50 frames before ACsN denoising. Instead, the gain for low-
pass filtering is lower because of the residual blurred noise. As an outlook, it would be
interesting to explore this feature with techniques like multi-photon microscopy. Indeed, in this
case, photodamage responds nonlinearly to the increase in excitation power at higher order
rates compared to fluorescence emission®*. So, to improve the SNR of multi-photon
fluorescence it is less harmful to image the sample using frame averaging of repeated scans
than increasing the illumination power.

The ultimate limitation for the application of any image restoration approach in fluorescence
microscopy is the intrinsic difficulty to assess precision and accuracy for each restored image®.
In fact, often only one measurement can be taken or sample motion limits the usage of data for
error analysis and, unlike cases like image deconvolution or super-resolution®, the input image
cannot be used as reference image (the PSF is a constant of the system while noise varies in
each image). To address this issue, we suggest the users to adopt the same guidelines for the
validation of an imaging system reported by Jost & Waters 2019%. For example, using fixed
samples it is possible to estimate both the precision (see 3.3 Reduction of Pixel Fluctuation )
and the accuracy (see 3.4 Dependency on the incoming photon flux) expected for a certain kind
of measurement. However, a general method to assess the presence of restoration artifacts is
still lacking. For this reason, we proposed the adoption of a no-reference metric based on the
evaluation of the MNI. We have demonstrated that this can be a reliable metric and we
anticipate that its reliability would be furtherly improved by the development of an
application-driven variant capable to spot feature artifacts or distortions introduced by image
processing. In this sense, several methods have recently been developed based on image
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models* or deep learning® but, to the best of our knowledge, none has been implemented for
fluorescence microscopy.

Furthermore, it should be noted that we have observed that ACsN works less efficiently in
conditions of strong background fluorescence. In fact, the presence of fluorescence due to out-
of-focus emitters or improper labeling is not included in the current noise model and is thus
not corrected by the algorithm. On the contrary, it is treated as the signal and, depending on
the SNR, can lead to an over-smoothing of the features of the sample. However, this is a
common problem in fluorescence microscopy and it is good practice to avoid it as much as
possible®. For this reason, several strategies have been devised to reduce the background
fluorescence during the experimental acquisitions or in post processing®¢. As an outlook, such
a module can be implemented into ACsN for broader applications.

Likewise, highly non-uniform illumination can be problematic during the processing of
images with large field of view. This may affect the performance of the sparse filtering, which
assumes the noise to be spatially-invariant. However, this is considerably mitigated by the use
of patch-based processing in this work. Indeed, the enhanced intensity uniformity within
individual patch groups, compared to the whole image, provides a great stability to this
approach. In fact, the robustness of the block-matching denoising against spatially-varying
noise has recently been shown with images corrupted by mixed Poisson-Gaussian noise¥.
Furthermore, ACsN can provide a different local estimate of the noise variation for different
subsets of the image, thus limiting the effect of non-uniform illumination. Nonetheless, we
regard as an outlook develop an adaptive filtering strategy that could further improve the
correction of highly spatially-varying noise, e.g. dark shot noise. We consider that valid
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Supplementary Figure 38: Effect of frame averaging over image restoration. The simulated image of a Siemens
star was used to quantify the effect of frame averaging at different spatial frequencies. (a) Illustrative frames of
the simulated noisy sequence and the denoised images obtained with and without frame averaging with both
ACsN and NCS algorithms. (b) Plot of the improvement in PSNR obtained by the two algorithms before and after
frame-averaging as a function of the distance from the center of the image. An average improvement of 10.6 dB
in PSNR is shown for ACsN after an average over 50 frames. The gain for NCS is lower because of the residual
blurred noise due to low-pass filtering.
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approaches would be either applying a variance stabilizing transformation in order to
standardize the image noise”, or using a modified Wiener filter based non-local weighted
estimation of noise parameters®. Alternatively, the minimization with Lagrangian multipliers
of an approximate Poisson likelihood cost function would consent us to iteratively refine the
image restoration in cases where the noise is highly spatially-variant without having to change
the core algorithm. These strategies would not only improve the performance of ACsN, but
also extend its use to other camera types beyond CMOS, such as CCD and EM-CCD cameras.

Besides, the evaluation of image quality after 2D filtering is intensity-dependent, so the
difference of intensity between the center and the periphery of the image generated by a non-
uniform illumination could prevent the 3D video filtering to be activated in the automatic mode,
which could produce suboptimal results. In specific cases, this can be spotted by examining the
Q-score and corrected manually. For big datasets, instead, this could be solved by introducing
tlat-field correction hardware or monitoring algorithms in the processing pipeline®.

Finally, we have shown the application to 3D and 4D data stacks of different color and spatio-
temporal combinations. However, ACsN currently supports only 3D data stacks so that, in
some cases such as processing lattice light sheet imaging data, we utilized either the time self-
similarity or the volumetric self-similarity. This strategy may not maximize the information
extraction present in volumetric time-lapses. We anticipate that the implementation of features
to handle multidimensional data would be a valuable addition to the current software. In
particular, the implementation of a search window in the 4D space would further improve the
image restoration of volumetric time-lapse sequences.

As another outlook, we plan to investigate the performance of ACsN with industrial-grade
CMOS cameras in order to optimize the image restoration and improve the quality of low-cost
sensors. We anticipate that this would draw interests of the scientific community in an effort to
approach the performance of sCMOS cameras at an affordable price. It would also spur the
adoption of ACsN to maximize the performance in various miniaturized or lab-on-a-chip
systems.

Other future developments will include the release of a Python version of the software for
wider usability, and the implementation of parallel GPU computing for even faster runtimes,
which would be another helpful addition that could furtherly enhance the performance and
range of applications for ACsN.
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